.. _sub_phys_pkg_land: Land package ------------ Introduction ############ This package provides a simple land model based on Rong Zhang [e-mail:roz@gfdl.noaa.gov] 2 layers model (see documentation below). It is primarily implemented for AIM (\_v23) atmospheric physics but could be adapted to work with a different atmospheric physics. Two subroutines (*aim\_aim2land.F* *aim\_land2aim.F* in *pkg/aim\_v23*) are used as interface with AIM physics. Number of layers is a parameter (*land\_nLev* in *LAND\_SIZE.h*) and can be changed. **Note on Land Model** date: June 1999 author: Rong Zhang Equations and Key Parameters ############################ This is a simple 2-layer land model. The top layer depth :math:`z1=0.1m`, the second layer depth :math:`z2=4m`. Let :math:`T_{g1},T_{g2}` be the temperature of each layer, :math:`W_{1,}W_{2}` be the soil moisture of each layer. The field capacity :math:`f_{1,}` :math:`f_{2}` are the maximum water amount in each layer, so :math:`W_{i}` is the ratio of available water to field capacity. :math:`f_{i}=\gamma z_{i},\gamma =0.24` is the field capapcity per meter soil\ :math:`,` so :math:`f_{1}=0.024m,` :math:`f_{2}=0.96m.` The land temperature is determined by total surface downward heat flux :math:`F,` .. math:: z_{1}C_{1}\frac{dT_{g1}}{dt}=F-\lambda \frac{T_{g1}-T_{g2}}{(z_{1}+z_{2})/2} .. math:: z_{2}C_{2}\frac{dT_{g2}}{dt}=\lambda \frac{T_{g1}-T_{g2}}{(z_{1}+z_{2})/2} here :math:`C_{1},C_{2}` are the heat capacity of each layer , :math:`\lambda ` is the thermal conductivity, :math:`\lambda =0.42Wm^{-1}K^{-1}.` .. math:: C_{1}=C_{w}W_{1}\gamma +C_{s} .. math:: C_{2}=C_{w}W_{2}\gamma +C_{s} :math:`C_{w},C_{s}` are the heat capacity of water and dry soil respectively. :math:`% C_{w}=4.2\times 10^{6}Jm^{-3}K^{-1},C_{s}=1.13\times 10^{6}Jm^{-3}K^{-1}.` The soil moisture is determined by precipitation :math:`P(m/s)`,surface evaporation :math:`E(m/s)` and runoff :math:`R(m/s).` .. math:: \frac{dW_{1}}{dt}=\frac{P-E-R}{f_{1}}+\frac{W_{2}-W_{1}}{\tau } :math:`\tau =2` :math:`days` is the time constant for diffusion of moisture between layers. .. math:: \frac{dW_{2}}{dt}=\frac{f_{1}}{f_{2}}\frac{W_{1}-W_{2}}{\tau } In the code, :math:`R=0` gives better result, :math:`W_{1},W_{2}` are set to be within [0, 1]. If :math:`W_{1}` is greater than 1, then let :math:`\delta W_{1}=W_{1}-1,W_{1}=1` and :math:`W_{2}=W_{2}+p\delta W_{1}\frac{f_{1}}{f_{2}}`, i.e. the runoff of top layer is put into second layer. :math:`p=0.5` is the fraction of top layer runoff that is put into second layer. The time step is 1 hour, it takes several years to reach equalibrium offline. Land diagnostics ################ :: ------------------------------------------------------------------------ <-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c) ------------------------------------------------------------------------ GrdSurfT| 1 |SM Lg |degC |Surface Temperature over land GrdTemp | 2 |SM MG |degC |Ground Temperature at each level GrdEnth | 2 |SM MG |J/m3 |Ground Enthalpy at each level GrdWater| 2 |SM P MG |0-1 |Ground Water (vs Field Capacity) Fraction at each level LdSnowH | 1 |SM P Lg |m |Snow Thickness over land LdSnwAge| 1 |SM P Lg |s |Snow Age over land RUNOFF | 1 |SM L1 |m/s |Run-Off per surface unit EnRunOff| 1 |SM L1 |W/m^2 |Energy flux associated with run-Off landHFlx| 1 |SM Lg |W/m^2 |net surface downward Heat flux over land landPmE | 1 |SM Lg |kg/m^2/s |Precipitation minus Evaporation over land ldEnFxPr| 1 |SM Lg |W/m^2 |Energy flux (over land) associated with Precip (snow,rain) References ########## Hansen J. et al. Efficient three-dimensional global models for climate studies: models I and II. *Monthly Weather Review*, vol.111, no.4, pp. 609-62, 1983 Experiments and tutorials that use land ####################################### - Global atmosphere experiment in aim.5l_cs verification directory.